Diamondoid-based molecular junctions: a computational study.
نویسندگان
چکیده
In this work, we deal with the computational investigation of diamondoid-based molecular conductance junctions and their electronic transport properties. A small diamondoid is placed between the two gold electrodes of the nanogap and is covalently bonded to the gold electrodes through two different molecules, a thiol group and a N-heterocyclic carbene molecule. We have shown that the thiol linker is more efficient as it introduces additional electron paths for transport at lower energies. The influence of doping the diamondoid on the properties of the molecular junctions has been investigated. We find that using a nitrogen atom to dope the diamondoids leads to a considerable increase of the zero bias conductance. For the N-doped system we show an asymmetric feature of the I-V curve of the junctions resulting in rectification within a very small range of bias voltages. The rectifying nature is the result of the characteristic shift in the bias-dependent highest occupied molecular orbital state. In all cases, the efficiency of the device is manifested and is discussed in view of novel nanotechnological applications.
منابع مشابه
Spatially resolved electronic and vibronic properties of single diamondoid molecules.
Diamondoids are a unique form of carbon nanostructure best described as hydrogen-terminated diamond molecules. Their diamond-cage structures and tetrahedral sp3 hybrid bonding create new possibilities for tuning electronic bandgaps, optical properties, thermal transport and mechanical strength at the nanoscale. The recently discovered higher diamondoids have thus generated much excitement in re...
متن کاملMeeting the Challenge of Building Diamondoid Medical Nanorobots
The technologies that are needed for the atomically precise fabrication of diamondoid nanorobots in macroscale quantities at low cost require the development of a new nanoscale manufacturing technology called positional diamondoid molecular manufacturing, enabling diamondoid nanofactories that can build nanorobots. Achieving this new technology will require the significant further development o...
متن کاملAnalysis of Diamondoid Mechanosynthesis Tooltip Pathologies Generated via a Distributed Computing Approach
The results of a combined molecular dynamics/quantum chemistry pathology study of previously reported organic (diamondoid) tooltips for diamondoid mechanosynthesis (DMS) are presented. This study, employing the NanoHive@Home (NH@H) distributed computing project, produced 80,000 tooltip geometries used in 200,000 calculations optimized at either the RHF/3-21G or RHF/STO-3G levels of theory based...
متن کاملAn unusual polyoxometalate-encapsulating 3D polyrotaxane framework formed by molecular squares threading on a twofold interpenetrated diamondoid skeleton.
Threading molecular square "beads" on a twofold interpenetrated diamondoid skeleton gives a new type of 3D metal-organic polyrotaxane framework with large channels, in which nanosized Keggin anions as guests are encapsulated for the first time.
متن کاملDiamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanotechnology
دوره 27 48 شماره
صفحات -
تاریخ انتشار 2016